Defenisi dan Sejarah Data Mining



Data Mining merupakan teknologi baru yang sangat berguna untuk membantu perusahaan-perusahaan menemukan informasi yang sangat penting dari gudang data mereka. Kakas data mining meramalkan tren dan sifat-sifat perilaku bisnis yang sangat berguna untuk mendukung pengambila keputusan penting. Analisis yang diotomatisasi yang dilakukan oleh data mining melebihi yang dilakukan oleh sistem pendukung keputusan tradisional yang sudah banyak digunakan. Data Mining dapat menjawab pertanyaan-pertanyaan bisnis yang dengan cara tradisional memerlukan banyak waktu untuk menjawabnya. Data Mining mengeksplorasi basis data untuk menemukan pola-pola yang tersembunyi, mencari informasi pemrediksi yang mungkin saja terlupakan oleh para pelaku bisnis karena terletak di luar ekspektasi mereka.

Data mining didefinisikan sebagai satu set teknik yang digunakan secara otomatis untuk mengeksplorasi secara menyeluruh dan membawa ke permukaan relasi-relasi yang kompleks pada set data yang sangat besar. Set data yang dimaksud di sini adalah set data yang berbentuk tabulasi, seperti yang banyak diimplementasikan dalam teknologi manajemen basis data relasional. Akan tetapi, teknik-teknik data mining dapat juga diaplikasikan pada representasi data yang lain, seperti domain data spatial, berbasis text, dan multimedia (citra).

Data mining dapat juga didefinisikan sebagai “pemodelan dan penemuan pola-pola yang tersembunyi dengan memanfaatkan data dalam volume yang besar” Data mining menggunakan pendekatan discovery-based dimana pencocokan pola (pattern-matching) dan algoritma- algoritma yang lain digunakan untuk menentukan relasi-relasi kunci di dalam data yang diekplorasi. Data mining merupakan komponen baru pada arsitektur sistem pendukung keputusan (DSS) di perusahaan-perusahaan. Data mining (penambangan data), sesuai dengan namanya, berkonotasi sebagai pencarian informasi bisnis yang berharga dari basis data yang sangat besar. Usaha pencarian yang dilakukan dapat dianalogikan dengan penambangan logam mulia dari lahan sumbernya. Dengan tersedianya basis data dalam kualitas dan ukuran yang memadai, teknologidata mining memiliki kemampuan-kemampuan sebagai berikut:

  • Mengotomatisasi prediksi tren dan sifat-sifat bisnis. Data mining mengotomatisasi proses pencarian informasi pemprediksi di dalam basis data yang besar. Pertanyaan-pertanyaan yang berkaitan dengan prediksi ini dapat cepat dijawab langsung dari data yang tersedia. Contoh dari masalah prediksi ini Misalnya target pemasaran, peramalan kebangkrutan dan bentuk- bentuk kerugian lainnya.
  • Mengotomatisasi penemuan pola-pola yang tidak diketahui sebelumnya. Kakas data mining “menyapu” basis data, kemudian mengidentifikasi pola-pola yang sebelumnya tersembunyi dalam satu sapuan.


Contoh dari penemuan pola ini adalah analisis pada data penjulan ritel untuk mengidentifikasi produk- produk, yang kelihatannya tidak berkaitan, yang seringkali dibeli secara bersamaan oleh kustomer. Contoh lain adalah pendeteksian transaksi palsu dengan kartu kredit dan identifikasi adanya data anomali yang dapat diartikan sebagai data salah ketik (karena kesalahan operator).

Cara Kerja Data Mining Bagaimana tepatnya data mining “menggali” hal-hal penting yang belum diketahui sebelumnya atau memprediksi apa yang akan terjadi? Teknik yang digunakan untuk melaksanakan tugas ini disebut pemodelan. Pemodelan di sini dimaksudkan sebagai kegiatan untuk membangun sebuah model pada situasi yang telah diketahui “jawabannya” dan kemudian menerapkannya pada situasi lain yang akan dicari jawabannya.

Berikut manfaat dari data mining : 
  •  Menembak target pasar Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya. 
  •  Melihat pola beli pemakai dari waktu ke waktu Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan. 
  • Identifikasi Kebutuhan Customer Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.
  • Informasi Summary Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.
  • Telekomunikasi Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.
  • Keuangan Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry).Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI. 
  • Asuransi Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainnya. lah Raga IBM Advanced Scout menggunakan data mining untuk menganalisis statistik permainan NBA (jumlah shots blocked, assists dan fouls) dalam rangka mencapai keunggulan bersaing (competitive advantage) untuk tim New York Knicks dan Miami Heat. 
  • Astronomi Jet Propulsion Laboratory (JPL) di Pasadena, California dan Palomar Observatory berhasil menemukan 22 quasar dengan bantuan data mining. Hal ini merupakan salah satu kesuksesan penerapan data mining di bidang astronomi dan ilmu ruang angkasa. Anda bisa lihat di www-aig.jpl.nasa.gov/public/mls/news/SKICAT-PR12-95.html. Terima kasih telah membaca materi kami, semoga bermanfaat bagi anda .. Kami mengharap FEEDBACK dari pembaca sekalian . Jika anda mengambil sebagian atau seluruh dari isi agar menampilkan Blog kami sebagai referensi anda.







Subscribe to receive free email updates:

Related Posts :

  • Jaringan Saraf Tiruan Jaringan syaraf tiruan (JST) adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mesimulasikan proses pem… Read More...
  • Definisi E-Commerce. E-commerce adalah dimana dalam satu website menyediakan atau dapatmelakukan Transaksi secara online atau juga bisa merupakan suatu cara ber… Read More...
  • Keamanan Komputer Defenisi Keamanan Komputer John D. Howard dalam bukunya “An Analysis of security incidents on the internet” menyatakan bahwa : Keam… Read More...
  • Algoritma Binary Search Algoritma Pencarian Biner (Binary Search) Penerapan terbanyak dari pencarian biner adalah untuk mencari sebuah nilai tertentu dalam… Read More...
  • Expert System (Sistem Pakar) o Expert System menurut beberapa ahli :1. Turban (2001)Sistem Pakar “ sistem yang manggunakan pengetahuan manusia yang dimasukkan … Read More...

1 Response to "Defenisi dan Sejarah Data Mining"